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Abstract-A strain space description of an elastic isotropic, plastic orthotropic constitutive model
is presented, which introduces the plastic orthotropy into the classical J2-theory by a transformation
of the elastic strain deviator. The constitutive model is physically similar to Hill's model, to which
it is compared analytically. It is implemented in a sheet metal forming finite element program, of
which simulation results on earing effects are shown. The orthotropic plasticity algorithm resulting
from the deviator transformation is an explicit constitutive algorithm and, therefore, numerically
efficient. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

The orthotropic plasticity model introduced by Hill (1948) is based on second order yield
(or loading) functions, which restricts its generality to some extent. Nevertheless, for the
numerical treatment of orthotropic plasticity it is most widely used in computer simulation
programs. Most of these orthotropy implementations use implicit constitutive algorithms
in which tensor quantities are iterated. Especially for vectorization, where a block of,
say, N finite element integration points is treated at one fell swoop, the computational
performance of implicit constitutive algorithms is usually worse than the performance of
comparable explicit algorithms, since in implicit algorithms a whole block of N integration
points must wait until the iterations of all members have converged. In explicit algorithms,
on the other hand, the number of operations is the same for all members, there are
no waiting block members. Therefore, the computation vector performance of explicit
constitutive algorithms is, in general, better than the performance of implicit algorithms.

In the present study we propose a model of orthotropic plasticity, which is similar to
Hill's model, but which is based on orthotropic tensor transformations of the elastic strain.
By using mappings of orthotropic yield surfaces to von Mises-like yield surfaces, the well­
known and numerically effective constitutive algorithm for isotropy, namely the radial
return method of Krieg and Krieg (1977), can be expanded to orthotropic plasticity without
losing numerical efficiency.

The constitutive description is performed in the strain space, which is based on the
kinematic variables (total) strain II and plastic strain llP. This is an adequate and natural
description for displacement-based or kinematic finite elements, which are most widely
used throughout nonlinear analysis. According to Casey and Naghdi (1983) the strain
space and stress space descriptions are not equivalent. Following Moss (1984) we recall the
computational significance of the strain space formulation, and following Naghdi (1990),
page 337, we recall its primacy.

We consider isotropic, linear stress-strain relations, second-order yield functions with
"associated" flow rules in the transformed strain spaces and isotropic hardening laws,
similar to the models of Hill (1948) and (1979). We introduce the plastic orthotropy
into the constitutive model by transformations of elastic strain deviators and discuss the
differences between the model presented and Hill's model. We focus on the constitutive
equations, for which we need physically meaningful definitions of strain traces and strain
deviators. These definitions are well-established for the infinitesimal deformation theory.
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Within the framework of finite deformation theory they are given in Heiduschke (1995),
(1996) and the references cited therein.

The motivation for the developments presented is to produce an explicit algorithm
with high vector performance for the implementation in finite element programs. A sheet
metal forming constitutive algorithm, whose isotropic version has been presented by Hei­
duschke et al. (1991), is implemented in the finite element simulation program AutoForm,
for which simulations concerning the earing effect of deep drawn circular sheet metal are
shown.

2. DEVIATOR TRANSFORMATION

We call the abbreviation

(I)

elastic strain, which is well accepted for infinitesimal deformations. Within the concept of
the finite deformation theory we emphasise that (I) is not defined by means of any so-called
intermediate stress free configuration. The abbreviation Ile is just the difference of the (total
logarithmic) strain Il and the (logarithmic) plastic strain IlP, which are tensors with respect
to the reference configuration Ko.

We introduce a tensor transformation on the elastic strain

(2)

respectively written in symbolic and component notation, where ee denotes the transformed
elastic strain deviator, OJ the orthotropic fourth-order transformation tensor and where the
summation convention is applied on repeated indices, i.e. on k and I in eqn (2b). In a co­
ordinate system pointing in principal material directions the non-zero components of OJ are

WIlli = L+M, W2222 = M+N, W3333 = N+L,

W I122 = W2211 = -M, W2233 = W3322 = -N, W3311 = WI133 = -L,
3 0WI212 = WI221 = W2112 = W2121 =;;: ,

(3)

The orthotropy coefficients L, M, N, 0, P, Q are similart to Hill (1948, 1979 and 1987).
The components of the fourth-order tensor w fulfil

and the symmetries

Wiikl = 0 (sum on i) (4)

(5)

The tensor transformation (2) results in a deviator, since eqn (4) holds and €kk = O. It is
therefore called a deviator transformation. The transformation inverse to (2) is

(6)

where

t See Section 5 for the comparison with Hill's model.
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denotes the elastic strain deviator and 1 the second-order unit tensor, which components
are given by Kronecker's blj. The deviatoric inverse to w, denoted by [oj -I', is the fourth­
order tensor

(7)

which obeys

(8)

where l' is the deviatoric fourth-order unit tensor with the components

The tensors l' and p obey the condition (4) and the symmetries (5) (Hill, 1987). In a co­
ordinate system pointing in principal material directions the non-zero components of pare

1 L+M+4N 1 M+N+4L 1 N+L+4M
PIIII 9LM+MN+NL' P2222 =9LM+MN+NL' Pm3 =9LM+MN+NL'

I M-2(N+L) 1 N-2(L+M)
PI122 =P2211 =9LM+MN+NL' P2233 =P3322 =9LM+MN+NL'

1 L-2(M+N)
P3311 = PI 133 = 9LM+MN+NL'

1
P2323 = P2332 = P3223 = P3232 = 6P'

In the case of isotropy the condition

I
P1212 = PI221 = P2112 = P2121 = 60'

1
P3131 = P3113 = PI331 = PI313 = 6Q'

L=M=N=O=P=Q=~
3

should hold so that

w=p=I'.

(9)

The condition (9) is later used to determine a free constant. For isotropy as specified by
eqn (9) the transformation (2) simply maps the elastic strain se into its deviator s'e and the
corresponding reverse transformation (6) is a unit transformation, which leaves deviators
unchanged.

3. CONSTITUTIVE MODEL

Besides the original (total logarithmic) strain

which has already been discussed with the abbreviation (1), we define the transformed total
strain deviator by

(10)
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L..-_--<>- eP

Fig. 1. Hardening function ff(lf) and hardening slope h(If).

and denote it by a superscript tilde. The transformed total strain ii is deviatoric since it is
the sum of the deviatoric transformed elastic strain ee (2) and the deviatoric plastic strain
sP, which obeys the incompressibility condition, ekk = 0, as shown below. Following Naghdi
and Trapp (1975) we use a strain space description for our orthotropic plasticity model
with the following set

of independent variables: the transformed (total) strain deviator ii, the plastic strain sP and
the equivalent plastic strain &' as the hardening parameter.

We introduce the hardening function ire&') and its slope he&') by Fig. 1. The shear
modulus is given by

and E and v denote Young's modulus and Poisson's ratio, respectively. The total set of
constitutive equations consists of:

• the yield function

A/f(&') A/f(&')
g(v) = Ilii-sPII- --= IWII- --

3 2G 3 2G '

where the first term is the tensor norm

II£" 11= jtfji

(11 )

(12)

of the t~nsformed elastic strain (2) and the second term depends on the hardening par­
ameter eP ;

• the flow rule

0 ifg < 0 "elastic domain" (13a)

0 ifg = 0 and 9<0 "unloading" (13b)

i;P = 0 ifg = 0 and 9=0 "neutral loading" (13c)

3G * ifg = 0 9>0 "loading" (13d)og and
3G+h(t!')



where

An elastic isotropic, plastic orthotropic constitutive model

og ee
n=-=--

oe IWII

2343

(14)

is the nonnal to the convex yield surface 9 = 0 in the transfonned e-space and 9is defined
as

• and the isotropic hardening law

(15)

Note, with eqns (11)-(15) the consistency condition

is fulfilled. Furthennore, the incompressibility condition of plastic strain

follows from eqn (14) and the time integral of eqn (13). In a strain space description the
stress is a dependent variable, which is not required for the description of plasticity, but
which may be calculated using the isotropic stress-strain relation

(16)

The tangential stiffness is calculated via the tangential elastic~plastic tensor which is defined
by the time derivative of the stress-strain relations (16) with the flow rule (13) inserted.
Within the framework of the finite defonnation theory, iT is the logarithmic stress which is
work-conjugate to the logarithmic strain rate e. The tensors iT and ecan be transfonned to
the Cauchy stress t and the rate of defonnation tensor 0, respectively (Heiduschke, 1995,
1996).

The effect of the elastic strain transfonnation (2) is depicted in Fig. 2, where the
orthotropic yield surface in the deviatoric plane of the principal &-space (denoted vertically)
is mapped into a von Mises cylinder in the deviatoric principal e-space (10). A situation in

£1
1.) -u:t

Fig. 2. The transformation of the elastic strain depicted in the deviatoric planes of the principal
strain spaces of £ and 8 denoted horizontally and vertically, respectively.
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g=O
Fig. 3. Yield surface and its normal, strain trajectory, strain rate and plastic strain in the deviatoric

principal ii-space.

the deviatoric principal a-space is depicted in Fig. 3. The central axis of the von Mises
cylinder is marked by the plastic strain sp. The transformed strain deviator a follows its
trajectory T' from A to B. At the point P the trajectory T' hits the yield surface. From P
to B plastic flow will occur and the yield surface must move, so that the strain a is always
at the boundary 9 = O. The material model prohibits the strain a from being outside the
closed elastic domain (g ~ 0). The situation in Fig. 3 may be compared to: 9 = 0 is a ring,
whose radius is dependent on the hardening parameter sP. Ifwe follow (draw) the trajectory
from A to B with a pencil, the ring will be driven by the pencil beyond the point P. The
total strain rate ~ is the tangent to the strain trajectory T' and the normal to the yield
surface n is parallel to the tensor difference (a - sP).

4. IDENTIFICATION OF THE ORTHOTROPY COEFFICIENTS BY R-VALUES

In order to identify the orthotropy coefficients L, M, N, 0, P, Q we define, according
to Fig. 4, the following three-dimensional r-values for uniaxial tension in the:

3

l=x

z
" 'p

r-- Ex;;
z- tf2

y=22

X
Fig. 4. Three-dimensional ,-values defined by uniaxial tension along different material directions.

3
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.. S~2
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The x-y-axes (superscript hat), y-t-axes (superscript tilde) and z-x-axes (superscript bar)
result from the 1-2-axes, 2-3-axes and 3-I-axes by a 45 8 rotation along 3, 1, and 2, respec­
tively. For uniaxial tension in the 3-direction we have

The stress components associated with the six uniaxial tension cases of Fig. 4 are given by
the first column of Table 1, entitled (Iij' The corresponding equivalent flow stresses (j of the
hardening function are given in column two. They follow from the elastic strain components
e~j of column three, via (Iij and the inverse of (16), from the transformed elastic strain §~j of
column four, via eij and the deviator transformation (2) and from the norm (12) of the
transformed elastic strain WII in column five. The plastic flow sr in column six is parallel
to ~j according to the flow rule (13). Its norm IWII in column seven is the equivalent plastic
strain increment (15) multiplied by J3fi.

For the cases of uniaxial tension under 45° to the principal material directions (rows
four to six of Table 1) we rotate the 1-, 2-, 3-co-ordinate systems by 45° along the 3-, l­
and 2-axes and express the components of the plastic flow tensors (column six) in the x-y­
3-, l-y-t- and x-2-z-bases by

and

op.' = [N +N~+L60 N - L
VI/ N+L-60

o 0

op.,=[-2(L
O
+M) 0

VI/ L+M+6P

o L-M

o ]30'4
o Sh'

-2(N+L)

o 1
30's

L-M Sh
L+M-6P

sP = [M+:-6
Q

IJ

M-N

o
-2(M+N)

o

M-N ] 30'6
o Sh'

M+N+6Q

respectively. Therefore, the three-dimensional r-values of Fig. 4 are

M
r, =y'

M
r2 = N'

30 1 3P 1 3Q 1
r, = N +L - 2' rv = L +M - 2' rz = M +N - 2.

By inverting the above equations we find the orthotropy coefficients
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Table I. Yielding of the proposed model in uniaxial tensile tests along the material direction I, 2, 3, i, y, Z
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).
L=~, M=A,

r]
), (I I)o = ~(I + 2rV> ~ +- ,
6 r] r2

A (I)P = (;(1 +2r,,) 1+ ~ ,

where .Ie is a free parameter which corresponds to the scalar weighting of the hardening
function. Without loss of generality we set A= 1/3 so that (9) is fulfilled. Hence, the
orthotropy coefficients are

1
L=­3r] ,

1
M=­

3 '
1

N=­
3r2 '

P = /8 (1 +2r,,) (1 + ~), (17)

For a co-ordinate system oriented with the z-axis pointing in the thickness direction
of sheet metal the above r-values are related with the usual RD" R45 " R90,-values by

(18)

Furthermore, for transverse isotropy of sheet metal characterised by R = Ro = R45 = R90

the deviator transformation (2) becomes invariant to rotations in the sheet metal plane

so that

[

COS cp

with Qim = Si~ cp

-sincp 0]

co~cp ~'

holds.

~~~%'%\~~
Fig. 5. The partly skew-symmetric shear deformation of 45" specimens under uniaxial tension.

The experimental determination of r-values with standard tensile tests may appear
surprising. For orthotropic sheet metal with Ro 1= R90 the directions of 45° to the principal
material axes are no planes of material symmetry. If, therefore, a uniaxial tensile load is
applied to a 45 G-specimen a combination of shear and tensile deformation results, as
depicted in Fig. 5. This partly skew-symmetric shear deformation causes problems with the
tensile test set-up, since it disturbs the homogeneity of the investigated deformation field.
However, 45°-tensile tests on commercially available sheet metal, Hoesch and Krupp (1992),
do not exhibit the behavior shown in Fig. 5. The 4Y-material directions seems to be planes
of symmetry in most of the sheet metal used in production with the corresponding R-values
Ro = R90 .

5. COMPARISON WITH HILL'S MODEL

Hill (1948) originally specified his yield function in the stress space (Hill, 1979). For a
comparison of the present model with Hill (1979) we rewrite Hill's yield function in our
notation



2348

where

K. Heiduschke

(19)

(20)

denotes Hill's definition of equivalent plastic strain. Using the features (4) of the deviator
transformation (2) and the deviatoric stress-strain relation

we express our yield function (11) as

(1' = 2GB'c. (21)

(22)

which may be comparedt with (19). The orthotropy coefficients of (J) used in both models
are compiled in Table 2. It should be noted that even if the yield functions (19) and
(22) are different, the normal tensors used in the constitutive models are parallel, denoted
by ~,

where "HILL and" are the normal tensor to Hill's yield function (19) in the original e-space
and the normal tensor (14) to the yield function (11) in the transformed ii-space, respectively.

Hill's and the model presented are compared for a uniaxial tension load in the material
directions depicted in Fig. 4. The material response of Hill's model is given in Table 3,
which is analogous to Table 1 of the present model. Column four of Table 3 lists the first
term of Hill's yield function

which corresponds to the first term of (11). Column six of Table 3 lists Hill's equivalent
plastic strain increment (20) multiplied by J3/2, which may be compared to IWII of the
present model compiled in Table I. Hill's hardening law is termed strain- and work­
hardening, as Hill's equivalent plastic strain increment as well as the plastic dissipation

are constant for different material directions, Table 3. On the other hand, the hardening
law of the model presented exhibits strain-hardening behavior. Only the equivalent plastic
strain increment is constant for different material directions, the plastic dissipation (1i/,t is
not.

Table 2. Designation of the orthotropy coefficients

Hill (1979) p q h n m

Present model ill L M N 30 3P 3Q

t Note the non-equivalence of loading conditions of stress and strain space descriptions for the finite
deformation theory as pointed out by Casey and Naghdi (1983), Moss (1984) and Naghdi (1990).
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6. THERMODYNAMICAL RESTRICTIONS

From thermodynamical considerations and, especially, the second law, the constitutive
restriction

(23)

which must hold for arbitrary work cycles, has been derived by Naghdi and Trapp (1975)
within the framework of the finite deformation theory.t The restriction (23), also termed
the non-negativity of work cycles assumption of Drucker and Prager, is fulfilled if

holds. For elasticity (l3a), unloading from a plastic state (l3b) or neutral loading (l3c) we
have

For loading into a plastic state we rewrite (I 3d) by use of (2) and (14) as

3G Wljklc'kt *
e~ = 3G+hW) IieIg

·
(24)

Since i:P is deviatoric we have O'il~ = O';l~ and from eqns (4) and (5) WijklCkl = Wilkle'kl'

Finally, using (24) we find for plastic loading that

is greater than zero, since 3G+hW) > 0, O';,WijklO'kl = O'ijWiiklO'kl > 0, eqn (19), leel > 0, by
definition (12) and 9> 0, (l3d). Hence, the presented model fulfils the thermodynamical
restriction (23) for arbitrary work cycles.

7. ALGORITHMIC ASPECTS

For the time discretization the current time step is denoted by a top left index and the
increment between two consecutive time steps by a prescript Ll. Hence, the discretized strain
increment is

Furthermore, the hardening function of Fig. 1 is approximated piecewise linearly. Following
Heiduschke and Sayir (1989), Heiduschke (1990) and Heiduschke et al. (1991) the dis­
cretization of the flow rule (13) is given by

(25)

with the inverse outside factor

t As pointed out by Naghdi and Trapp (1975). the restriction (23) should not be confused with the postulate
of Drucker (1952. 1964). which has only been formulated within the infinitesimal deformation theory.
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(26)

with the hardening function aC6P), its slope hC6P) as depicted by Fig. 1 and with II' II
denoting the tensor norm (12). Within the infinitesimal deformation theory, the time­
discretization formulas (25) and (26) are identical with the strain-space version of the radial
return method of Krieg and Krieg (1977), also with respect to consistency, stability and
accuracy. The strain difference on the right hand side of (25) may be rewritten as

(27)

Using (27) the discretized flow rule (25) is expressed by the inverse outside factor nand
the difference of the new total strain minus the old plastic strain

(28)

where l' denotes the deviatoric fourth-order unit tensor and [oj -I the deviatoric inverse
fourth-order tensor which is defined via eqns (7), (8). The inverse outside factor n is
determined in the constitutive algorithm by the numerical solution of the scalar polynomial

(29)

which follows from squaring eqn (26) and inserting eqns (27) and (28). The coefficients

(30)

are functions of the time-dependent variables 1+1&. reP, f 6 P and of the material parameters G,
aC£P) , hC£P), L, M, N, 0, P and Q. The calculation of the Pi-coefficients (29) is rather
involved and only manageable by using a symbolic algebra program, like Mathematica of
Wolfram (1991). In the discretized constitutive model plastic flow occurs only if the total
strain of the current time step lies outside the yield surface of the previous step. The inverse
outside factor n, which is defined as the quotient of the previous radius to the current trial
radius of the von Mises cylinder in the transformed strain space 8, obeys

1 > n > 0, (31 )

and the polynomial (29) has only one real solution in the interval (31). Once the inverse
outside factor n is determined numerically from eqns (29)~(31) the plastic flow increment
follows dir~tIy from eqn (28), without iterations on tensor quantities. The hardening
parameter f6p is given by the time-integrated norm of ~&P (15), the stress (J by the stress­
strain relations (16) and the tangential elastic-plastic matrix by the time derivative of the
stress-strain relations (16) with the flow rule (13) inserted.

8. SIMULATION RESULTS ON EARING OF SHEET METAL

A specially designed version of our constitutive model is implemented in the finite
element program AutoForm which simulates the forming process of sheet metal. The
isotropic algorithm has been presented by Heiduschke et al. (1991). The sheet metal is
modelled by plane triangular membrane elements. It is described in a co-ordinate system
co-rotating with respect to the membrane elements with the z-axis pointing in the thickness
direction. Hence, the yz- and zx-components of the relevant stress and strain tensors vanish
and the constitutive algorithm is driven by the following set of load parameters
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(32)

namely the strain tensor components in the sheet plane and the stress component normal
to it, which is determined from the downholder pressure. Using the zz-component of eqn
(16) the driving tensor difference, t+lg_{gP, on the right-hand-side of eqn (28) may be
rewritten for the set (32) of constitutive load parameters. With (32) the relevant orthotropy
coefficients (17) reduce to

I
L=~

3Ro '
I (I I)0= 18(1 +2R4S ) R;; + R

90
• (33)

The deformation, strains and rotations encountered in sheet metal forming processes
are moderate. Therefore, the constitutive description is based on the logarithmic strain
space, i.e. on the logarithmic strain g and the work-conjugate logarithmic stress (1 with
respect to the reference configuration. In order to derive the finite element stiffness matrices
and equivalent nodal forces, which are required for the global system of nonlinear equi­
librium equations, the tensors i; and (1 are respectively transformed (Heiduschke, 1995) to
the rate of deformation tensor fi and the Cauchy stress t with respect to the current
configuration, where the principle of virtual work is applied. The global system solution,
which can be decoupled into bending and stretching (Kubli, 1991, 1995) is achieved using
Newton-Raphson iterations on the current node positions. This iterative global solution
procedure should not be confused with the explicitness of the constitutive algorithm pre­
sented in this study. In an explicit constitutive algorithm the constitutive tensors are not
iterated.

An interesting consequence of orthotropic material behavior is the earing effect, which
we study in the example of the deep drawing of circular sheet metal under a spherical
punch. For reasons of material and geometrical symmetry we model only one quarter of
the sheet shown in Fig. 6. The initially flat sheet metal of Fig. 6 is deep drawn. Its deformed
shape is depicted in the isometric view of Fig. 7.

The earing effect is best visible with a top view, as shown in Fig. 6 for the initial shape
and in Figs 8-10 for the deformed shapes. The sets of R-values

(34)

(35)

(36)

as defined in Fig. 4 and eqns (18), (33) correspond to the Figs 8-10, respectively. Isotropic

0°

Fig. 6. Top view of a flat circular sheet metal with planes of symmetry
and the initial finite element mesh.
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Fig. 7. Isometric view of the deformed finite element mesh resulting
from deep drawing with a spherical punch.
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Fig. 10. Top view of the deformed finite element mesh for orthotropy with respect to a shear
component (36).

material behavior (34) is depicted in Fig. 8 and results in a circular shape. For orthotropy
with respect to a normal component (35) the deformed shape shown in Fig. 9 has two ears
and is similar to an ellipse. For orthotropy with respect to a shear component (36) four
ears result, as depicted in Fig. 10. The case (35) of Fig. 9 is interesting: compared to
isotropy (34) the Ro-value is increased, but the ears appear in the 90°-direction. This effect
is in accordance with (33), where the shear coefficient 0 is proportional to the Rw-value
and where the normal coefficients Land N are inversely proportional to Ro and R 90c,
respectively.

9. CONCLUSIONS

The presented constitutive model for isotropic elasticity and orthotropic plasticity is
based on the deviator transformation (2) of the elastic portion of the strain (I). It transforms
the orthotropic yield function of the original strain space I: to an isotropic yield function in
a transformed strain space 8, where the strain space equivalent of the radial return method
of Krieg and Krieg (1977) is applied.

Radial return is a method of stress space descriptions. In the deviatoric plane of the
stress space, the amount of radial return is given by the plastic strain increment multiplied
by 2G. In the corresponding strain space algorithms the whole yield function is, on the
other hand, shifted by the plastic strain increment. For the infinitesimal deformation theory,
where stress space and strain space descriptions are identical, the radial return method and
the corresponding strain space algorithm are identical, also with respect to accuracy,
stability and consistency. However, for the finite deformation theory the stress space and
strain space descriptions are no longer equivalent (Casey and Naghdi, 1983; Moss, 1984;
Naghdi, 1990) since the underlying stress and strain definitions differ. Hence, the physical
behavior of the corresponding constitutive models is also different.

The combination of the de... ~tor transformation and the strain space version of the
radial return method yields an explicit constitutive algorithm which requires no iterations
on constitutive tensors. Therefore, the algorithm's vector performance is excellent, about
3% slower than the isotropic elastic-plastic algorithm of Heiduschke et al. (1991), which
is also explicit. The cost of the speed-up using an explicit constitutive algorithm is the­
initialisation of the polynomial coefficients (30). They become rather lengthy, some mega­
bytes of source code and their derivation is only manageable by using a symbolic algebra
program.
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Hill (1948) and (1979) defined a component-wise weighted norm of the stress, namely
the first part ofeqn (19) and the inversely weighted norm of the plastic strain increment (20),
Therefore, Hill's hardening law exhibits strain-hardening and work-hardening behavior. On
the other hand, the presented model simply uses the norm Iltll = Jt;;t; for the constitutive
tensors which is not weighted component-wise. The hardening law, therefore, exhibits only
strain-hardening behavior and no work-hardening.

The notions of normality or associated flow rules lead to confusion within the frame­
work of the finite deformation theory, because yield functions based on different finite
strain or stress definitions result in different yield surfaces, whose gradients are no longer
parallel. Hence, the normality of plastic flow is strongly related to the underlying definition
of finite strain or stress. Due to the transformation of the elastic strain two strain spaces
are defined in the current study, namely the original e-space and the transformed Ii-space.
We apply the normality or associated flow rule in the transformed Ii-space, where we define
the plastic flow by eqn (13). In general, the plastic flow rule, therefore, is non-associated to
the yield function in the original e-space. However, the presented model fulfils the restriction
(23) of the second law of thermodynamics, as shown in Section 6. Within the framework
of the infinitesimal deformation theory, the restriction (23) was formerly called Drucker's
postulate (Drucker, 1952 and 1964).

The orthotropy parameters L, M, N, 0, P, Qofthe presented model may be completely
determined by kinematic variables, namely the plastic strain increments and the cor­
responding r-values as defined in Fig. 4, analogous to Hill's model. On the other hand, they
may be determined by the static variables of the orientation-dependent yield stresses of
Table 1, column two. The correlation of both sets of orthotropy parameters is a measure
of the applicability of the constitutive models based on second order yield functions.
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